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In this paper we report numerically observed spontaneous vanishing of mean curvature on a developable
cone made by pushing a thin elastic sheet into a circular container �E. Cerda, S. Chaieb, F. Melo, and L.
Mahadevan, Nature �London� 401 46 �1999��. We show that this feature is independent of thickness of the
sheet, the supporting radius, and the amount of deflection. Several variants of the developable cone are studied
to examine the necessary conditions that lead to the vanishing of mean curvature. It is found that the presence
of appropriate amount of radial stress is necessary. The developable cone geometry somehow produces the
right amount of radial stress to induce just enough radial curvature to cancel the conical azimuthal curvature.
In addition, the circular symmetry of supporting container edge plays an important role. With an elliptical
supporting edge, the radial curvature overcompensates the azimuthal curvature near the minor axis and under-
compensates near the major axis. Our numerical finding is verified by a crude experiment using a reflective
plastic sheet. We expect this finding to have broad importance in describing the general geometrical properties
of forced crumpling of thin sheets.
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I. INTRODUCTION

The crumpling of a thin sheet can be understood as the
condensation of elastic energy into a network of two types of
singular structures: folding ridges and pointlike vertices.
Scaling laws governing the energy and size of the ridge have
been obtained analytically and tested numerically �2–5�.
Pointlike singularities are also studied extensively �1,6–12�.
Besides the understanding of these singularities, however,
there is a lack of knowledge about the geometrical and me-
chanical effects of confining forces on a thin elastic sheet.

In this paper, we report an interesting observation of the
response of an elastic sheet to the exertion of confining
forces, using the developable cone or “d-cone” geometry
studied by Cerda and co-workers �8,1,13�. Specifically, this
system is defined as follows. We push the center of a circular
elastic sheet of radius Rp axially into a cylindrical container
of radius R by a distance d. It is useful to express the deflec-
tion of the sheet by ��d /R. Due to the constraint of un-
stretchability, some part of the sheet is buckled inwardly and
the sheet deforms into a nonaxisymmetric conical surface
that is only in partial contact with the edge of the container
�Fig. 1�, thus forming a single developable cone.

In the limit of pure bending, that is, as thickness goes to
zero, the shape of the d cone has been shown to follow the
solutions of the Elastica equation �13�. For asymptoticaly
small deformation �, the shape can be analytically deter-
mined: this indicates that the buckled region occupies a fixed
azimuthal angle of 138°, independent of all relevant length
scales �8,13�. However, for a physical sheet with finite thick-
ness h, as discussed in Ref. �12�, stretching must occur and
the stretching energy is concentrated in a small core region
near the pushing tip. Outside this core region, bending en-
ergy strongly predominates over stretching energy. Cerda et
al. �1� propose that the size of the core region scales as
h1/3R2/3. This scaling law was verified by our numerical
simulations through direct geometrical measurements and

through inferences from the measurements of central pushing
force �12�. However, our analytical estimates indicate that
this scaling cannot be asymptotic. Away from the core re-
gion, the confining normal forces from the edge of the cylin-
drical container arise from the requirement to counteract the
central pushing force. In the situation of pure bending, Cerda
and Mahadevan �13� predict that the sheet exerts a concen-
trated point force to the container at the two take-off points
where the sheet bends away from the container. Due to the
translational symmetry along the region of the surface in
contact with the container, the normal force is found to be
independent of the azimuthal angle.

The problem of interest here is the response of the sheet
to these azimuthally constant normal forces from the edge of

FIG. 1. A simulated developable cone, formed as we axially
push a hexagonal elastic sheet into a cylindrical container. The force
F is applied to the central point of the sheet in the z direction. The
dots are the lattice points of our simulation, as described in Sec. II.
The buckled region appears at the lower right region of the sheet,
where it bends downward and away from the container.
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the container. Through our numerical study, we find that
these normal forces produce a striking effect: they cause the
mean curvature to vanish near the supporting edge within our
numerical precision. In this work, we investigate this finding
in a single d cone as well as in variants of the d cone chosen
to explore the conditions for this striking phenomenon. The
numerical method we used is specified in Sec. II, consistent
with that of Ref. �12�. We also describe our validation of its
accuracy. In Sec. III, we give the detailed description of our
numerical findings and effects of altering the systems in vari-
ous ways. In Sec. IV, a simple experiment is performed to
verify our numerical observations for the d cone. We con-
clude with Sec. V and discuss limitations of and implications
from our findings.

II. NUMERICAL METHODS

We begin by specifying the numerical models we use. An
elastic sheet is modelled by a triangular lattice of springs of
unstretched length a and spring constant k, after Seung and
Nelson �14�. Bending rigidity is introduced by assigning an
energy of J�1− n̂1 · n̂2� to every pair of adjacent triangles with
normals n̂1 and n̂2. When strains are small compared to unity
and radii of curvature are large compared to the lattice spac-
ing a, this model bends and stretches like an elastic sheet
of thickness h=a�8J /k made of isotropic, homogeneous
material with bending modulus �=J�3/2, Young’s modulus
Y =2ka /h�3, and Poisson’s ratio �=1/3. Lattice spacing a is
set to be 1. The shape of the sheet in our simulation is a
regular hexagon of side length Rp. The typical value of Rpis
60a.

To obtain a single d-cone shape, we need to simulate the
constraining container edge and pushing force. As shown in
Fig. 1, the edge lies in the x-y plane and is described by the
equation x2+y2=R2. Pushing in the center of the sheet is
accomplished by introducing a repulsive potential of the
form Uforce�z1�=−Fz1, where z1 is the z coordinate of the
lattice point in the center and F is the magnitude of the
pushing force. This force is applied in the positive z direc-
tion. The constraining edge is implemented by a potential of
the form Uedge=�CpH�zi� / ����xi

2+yi
2−R�2+zi

2�4+�8	, where
�, Cp are constants and the summation is over all lattice
points with coordinates �xi ,yi ,zi�. H�z� is the unit step func-
tion smoothed over a lattice spacing, which makes certain
that this potential only acts on the lattice points that have
already moved into the container �those with zi�0�. We
choose the range � of the potential to be one lattice spacing.
Thus the force decays rapidly once the lattice points go away
from the edge. A discussion concerning the choices of the
edge potential form is carried out in Sec. V.

The conjugate gradient algorithm �17� is used to minimize
the total elastic and potential energy of the system as a func-
tion of the coordinates of all lattice points. This lattice model
behaves like a continuum material provided that the curva-
tures are everywhere much smaller than 1/a. This limitation
restricts the values of deflection � of the d cone to be below
0.25.

We determine the curvatures approximately from each tri-
angle in the sheet. For this measurement, we take the curva-

ture tensor to be constant across each triangle. We calculate it
using the relative heights of the six vertices of the three
triangles that share sides with the given triangle �5�. The six
relative heights wi normal to the triangle surface are fit to a
function of the form

wi = b1 + b2ui + b3vi + b4ui
2 + b5uivi + b6vi

2, i = 1, . . . ,6,

�1�

where �ui ,vi ,wi	 are coordinates of the vertices in a local
coordinate system that has w axis perpendicular to the sur-
face of the given triangle. This choice of local coordinate
system ensures that b2 and b3 are negligible so that curvature
tensors can be determined only from the coefficients of qua-
dratic terms. In practice, our numerical findings do show that
the values of b2 and b3 are on the order of 10−2 or lower.
Therefore curvature tensors follow immediately from the
identification Cuu=2�b4, Cvv=2�b6 , Cuv=b5. The mean
curvature C is defined as half of the trace of curvature tensor:
C= �Cuu+Cvv� /2.

This lattice model of elastic sheet has been used to study
both the ridge and the point-like singularities in crumpled
sheets �2–5,12�. The accuracy of it has been tested in various
ways. Using this model, Lobkovsky �3� numerically verified
the “virial theorem” for ridges that the bending energy is five
times the stretching energy, for asymptotically thin sheets. In
the study of the d cone, the ratio of the normal force from the
�-function term to that from the angle-independent term is
found to be 0.70 numerically �12�, compared well with the
theoretical prediction 0.69 �13�. Also, the azimuthal profiles
of curvature are in reasonably good agreement with the the-
oretical prediction as deformation of the d cone goes to zero
�12�. In addition, we tested our program by setting the lattice
at different initial states and letting the program look for
minimized energy state. We found the lattice converges to
the same state, with agreements of pushing force and ener-
gies better than 1% for fixed deflection.

III. CONDITIONS FOR VANISHING MEAN CURVATURE

We consider the mean curvature of the sheet along a ra-
dial line that lies in the non-buckled region. Ideally, for a
regular conical surface, the mean curvature only comes from
the azimuthal component C		 and follows a 1/r decay, where
r is the distance to the tip. For a d cone described here,
however, due to the pushing of the normal forces from the
edge of container, the sheet has to experience a small defor-
mation near the region where it touches the edge. More spe-
cifically, these normal forces cause a small inward deflection
of the sheet and hence induce both curvature and strain in the
contacting region. Noticing that the curvature induced is in
radial direction and has opposite sign to C		, we expect the
mean curvature to be reduced near the edge.

Numerically, Fig. 2 shows the mean curvature profiles
along three different radial directions on the same d cone
with thickness h=0.102a, deformation �=0.15, and cylinder
radius R=38a. Data denoted by pluses and crosses are mea-
sured in the nonbuckled region of the sheet; data denoted by
circles are measured in the buckled region. The inset shows
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the d-cone shape and the three radial directions, denoted by
the same symbols as the corresponding data. The values of
three fitted slopes are all close to −1, verifying the 1/r fea-
ture of the mean curvature. However, for profiles in the non-
buckled region, an abrupt drop of the mean curvature is ob-
served near r=38a, where the sheet touches the edge of the
container. The curvature drops by more than one order of
magnitude, making the mean curvature at the valley effec-
tively zero. This indicates that the radial curvature caused by
the pushing of normal forces from the edge not only reduces
the mean curvature near the edge, but also virtually equals
the original azimuthal curvature in magnitude.

We further observe that the feature of vanishing mean
curvature does not depend on particular values of R or �.
Figure 3 shows the radial profiles of mean curvature for the d
cone formed with four different confining radius R, with
fixed thickness h=0.102a and deformation �=0.15. We ob-
serve that mean curvature drops down to zero effectively at
each of the four radii. Moreover, Fig. 4 displays the mean
curvature profiles along a radial line on the d cone formed
with four different deformations, with fixed thickness
h=0.102a and confining radius R=38a. It is seen that for
four deformations, the mean curvatures all go to zero near
r=38a, which the sheet touches the edge.

To explore the conditions for the vanishing of mean cur-
vature, we study variants of the d cone and make compari-
sons. To determine what is important in this phenomenon, we
look at the balance of normal force on each element of the
sheet, which is expressed by the force von Kármán equation
�16�,

�
��M
� = �
�C
� + P . �2�

Here M
� are torques per unit length, �
� are in-plane
stresses, and P is the external normal pressure on the sheet.

For an asymptotically thin sheet, the azimuthal curvature of
the d cone is C		=
�	� /r, where 
�	�=−� for 
	 
 �	0 �un-
buckled region�. In the limit of small deformation, it is found
that 
�	�=−� cos�a	� / cos�a	0� for 
	 
 �	0 �buckled region�,
with 	0=1.21 rad and a=3.8 �8,13�. The torques are propor-
tional to curvatures through a constitutive law implicit in the
energy equations �15�: Mrr=��C		=��
 /rand M		=�C		

=�
 /r, where � is the bending modulus and � is the Poisson
ratio. Using these laws to eliminate torques from the force
von Kármán equation, one obtains

�		 =
�

r2�2� +

̈



� −

Pr



, �3�

where the dots above functions denote 	 derivatives. For the
unbuckled region, 
̈ /
=0, so �		=2�� /r2. For the buckled

FIG. 2. Radial profiles of mean curvature in three different di-
rections on a d-cone surface. The d cone has thickness h=0.102a,
confining radius R=38a and deformation �=0.15, where a is the
lattice spacing in the numerical model �14�. The inset shows the
shape of the d cone, where the three radial directions are denoted by
the same symbols as the corresponding data. The slopes of fitted
lines are −0.934, −0.936, and −0.820 for data denoted by pluses,
crosses, and circles, respectively.

FIG. 3. Radial profiles of mean curvature for d cones with four
different values of confining radius: R=26a, 32a, 38a, 44a. Thick-
ness h=0.102a and deformation �=0.15.

FIG. 4. Radial profiles of mean curvature for d cones with four
different values of deformations: �=0.05, 0.10, 0.15, 0.20. Thick-
ness h=0.102a and confining radius R=38a.
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region, 
̈ /
=−a2, so �		=−��a2−2�� /r2. Therefore the azi-
muthal stress is compressive in the buckled region but tensile
in the unbuckled region. Cerda and Mahadevan �13� show
that for the same shape formed under a conical support, un-
like a d cone formed under a ring support as illustrated
above, the azimuthal stress in the unbuckled region is com-
pressive due to the exertion of normal pressure everywhere.
In our case, the tensile azimuthal stress in the unbuckled
region is changed to be compressive only near the edge of
container, where the normal forces are nonzero. Whether the
stresses are tensile or compressive, their magnitude goes as
1/r2. We call them type-I stresses and denote them by the
symbol ��1�. It is noted that the type-I stresses exist both in
azimuthal and radial directions.

Having looked at the local normal force balance of
the surface, we now investigate the global force balance.
We consider a region that encloses area between inner radius
Rc and outer radius r, where r can take values between
Rc and R. Rc denotes the size of the stretching core region.
The tension exerted on the inner edge of this region
is equivalent to the central pushing force of a regular d
cone. This force must be balanced by the force due to radial
in-plane stress �rr on the outer perimeter of the region.
Let � be the angle between a radial line or generator of
the d cone and the horizontal. Since tan �=
�	�, we have
sin �=
�	� /�1+
2�	�. The balance of vertical forces yields


 �rrr sin �d	 = F , �4�

which holds for every value of r from Rc to R. It is easy
to see that the type-I stresses alone cannot satisfy this
equation, since they go as 1/r2, they would give a 1/r
prefactor on the left side of the equation, while the right
side of the equation is independent of r. Therefore the inte-
gral from type-I stresses must vanish and there must exist
some additional tensile stresses in the outer region that scale
as 1 /r to satisfy Eq. �4�. We call these stresses type-II
stresses and denote them by ��2�. They persist up to the sup-
porting container edge, where normal force from the con-
tainer counteracts the external pushing force. We can write
��2�r=Fe�	�, where e�	� is a function only of 	 and satisfies
�e�	�sin �d	=1. It is obvious that e�	� is of order unity.
To estimate the magnitude of type-II stresses, we notice
that F=�E /�d= ��E /��� /R�� /R. Thus ��2��F /r�� / �rR�.
The type-II stresses are comparable with type-I stresses only
near the container edge since the ratio ��1� /��2��r /R for
Rc�r�R.

Now that we see that the contacting normal force and the
stresses seem to matter, we vary the system in ways that alter
them. For this purpose, we study several geometries that we
call the cut cone, regular cone, puckered cylinder, and ellip-
tical d cone, and compare them with the regular d cone.

First, to study the effect of stresses, we cut the sheet along
a radial line and push it into the same container to form a
“cut cone.” Now that the boundaries along the cut line are
free to move, the buckled region no longer appears and the
sheet will necessarily overlap itself in order to fit into the
container, as illustrated in Fig. 5. The cut cone mostly fol-

lows a conical shape as the unbuckled region of the d cone
does, indicating that the azimuthal tensile stress remains the
same as the d cone. Near the free boundaries, however, the
sheet deviates from a conical shape and does not contact
against the confining edge. Instead, there is a section of the
sheet near the free boundaries that has less curvature than the
corresponding d-cone shape, due to the lack of bending mo-
ment there. Consequently, the free boundaries contact the
container at a nonzero angle and the azimuthal stresses arise
from the pushing force from the edge. Due to the decreases
in the energies, the pushing force is reduced by a finite factor
relative to that of the d cone. This causes the radial tensile
stress to be reduced by the same factor. Numerically, it is
found that the pushing force is reduced by about one order of
magnitude. The measurements of the mean curvature along
radial lines show rather small decreases in the contacting
region, far from enough to make mean curvature vanish.
These contrasts to the d cone show that the appropriate
amount of radial stress in the d cone may play an important
role for the mean curvature to vanish.

Next, we make a regular cone by removing one 60° sector
of the hexagon and joining the two free sides �see Fig. 6�. We
then push this regular cone into the same container as before,
and measure the corresponding radial profile of mean curva-
ture. The cone does not buckle for the range of forces we
consider. We find that as we push with the similar force as

FIG. 5. After we cut the sheet along a radial line, the buckled
region no longer appears as we push the sheet into the same con-
tainer. Instead, the free boundaries overlap to accommodate the
confining edge.

FIG. 6. A simulated regular cone formed by removing one sec-
tor and sewing the free boundaries.
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that required for a d cone of the same thickness and defor-
mation, we observe the similar feature of vanishing mean
curvature near r=R. To illustrate this point, Fig. 7 shows the
radial profiles of mean curvature of a regular cone pushed
with three different forces against the confining edge. The
pluses, circles, and triangles are for a regular cone pushed by
half of the corresponding d-cone force, one d-cone force, and
twice the d-cone force, respectively. We observe that the
mean curvature vanishes as we push with one d-cone force,
while it is not vanishing for half d-cone force and is chang-
ing sign for double d-cone force. When the central pushing
force is similar, the normal forces from the edge are similar
for the regular cone and the d cone. So are the azimuthal
compressive stresses induced by them in the contacting re-
gion. These facts show that the pushing force required to
make the d cone is somehow just enough to produce the right
amount of stresses for which the induced radial curvature
cancels original azimuthal curvature.

We next investigate a variant that preserves the feature of
a buckled sheet caused by a constraining boundary without
the d cone’s feature of an additional force applied away from
this boundary. To see this, we consider a puckered cylinder
formed by rolling a sheet of cylindrical shape with radius R
into a circular cylinder of radius b�R, as studied by Cerda
and Mahadevan �13�. To make closer comparison with the d
cone, we replace the cylindrical confining surface with a cir-
cular ring of the same radius. Now that the puckered cylin-
drical sheet is confined by the ring and the ring exerts normal
forces on the sheet, we expect the mean curvature to be
reduced in the contacting region where the sheet touches the
confining ring. The simulated shape is shown in Fig. 8. We
measure the mean curvature along a longitudinal line parallel
to the axis of cylinder. A small drop of mean curvature is
observed where the sheet touches the ring. Not surprisingly,
the reduction of mean curvature goes up as the ratio R /b

increases. However, we find that the drop is no more than
10% for various values of R and b that can produce a rea-
sonable confined shape, even for R /b=2. The reason that the
mean curvature does not vanish near the contacting region is
attributed to the absence of stress in the nonazimuthal direc-
tion. By contrast, the d cone has a radial tensile stress which
transmits the central force to the container.

Last, we observe that the circular symmetry is important
for cancellation of mean curvature. To see this, an elliptical
confining edge is used instead of a circular edge. Our origi-
nal hexagonal sheet is pushed against this elliptical edge. The
lengths of the major and minor axes of the ellipse are 45a
and 30a, respectively, with a being the lattice spacing in the
numerical model. Figure 9 shows mean curvature profiles in
two different radial directions, both of which lie within the
unbuckled region of the sheet. One profile is measured along
a major axis of the elliptical edge. The other profile is mea-
sured along the lattice direction 60° from the first and thus
meets the ellipse close to the minor axis. For the sake of
uniform comparison, we measured curvatures only along
principal lattice directions. It is seen that the first profile
shows a drop of mean curvature near the contacting region,
although this drop is not as pronounced as those in Fig. 2. On
the other hand, the second profile shows that the mean cur-
vature changes sign. The induced radial curvature is greater
than the azimuthal curvature in magnitude, thus overcom-
pensating the azimuthal curvature. We conclude that the
break of circular symmetry in the unbuckled region leads to
nonuniform degrees of compensations of mean curvature in
different directions.

IV. AN EXPERIMENTAL VERIFICATION

To demonstrate that our numerically observed phenom-
enon occurs also in physical sheets, a crude experiment was

FIG. 7. Radial profiles of mean curvature of a regular cone
pushed with three different forces against the confining edge. The
regular cone has thickness h=0.127a and deformation �=0.66.
Confining radius is R=38a. Plus is for regular cone pushed with
half d-cone force; circle is for regular cone pushed with one d-cone
force; triangle is for regular cone pushed with double d-cone force,
with downward triangles denoting mean curvatures changing sign. FIG. 8. A simulated puckered cylinder confined by a circular

ring.
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performed. First, we made a d cone by pushing a reflective
plastic sheet into a circular container of radius 9.1 cm. The
sheet is a an ordinary 22-cm�28-cm projection transparency
used in presentations. Its thickness is about 0.1 mm. We mea-
sured the curvature profile of this sheet by observing the
images of standard objects reflected in the sheet. The mag-
nification of each object allows us to infer the curvature at
the corresponding position on the d cone. The experimental
setup is sketched in Fig. 10. The standard objects are identi-
cal black circles arranged in a row, printed on a second trans-
parency. The row of circles is oriented such that its images
on the surface of the d cone lie along a radial line in the
unbuckled region. The images of the circles are turned into
ellipses that are progressively wider in the azimuthal direc-
tion as they approach the vertex, since the azimuthal curva-
ture is inversely proportional to the distance to the vertex. In
the noncontacting region, the images all have the same
height in the radial direction, since radial curvature is zero

there. However, the image on the edge is different. It is being
contracted in the radial direction due to the induced radial
curvature there. If the radial curvature is of the same magni-
tude as azimuthal curvature at the edge, the contraction in the
radial direction and the expansion in the azimuthal direction
have to be by the same factor. Let w be the azimuthal size
and l be the radial size of the image, then the w / l ratio for
the image at the edge has to be the square of that ratio for the
image just outside or inside the edge.

We used a digital camera to take pictures of the images
near the edge. Figure 11 is one of the pictures taken for �
�0.25. It shows images of five circles that lie along a radial
direction. The lower images are closer to the tip. The central
spot is the one that lies on the edge. The values of azimuthal
and radial sizes of the images as well as the their ratios are
listed in Table I, with the corresponding ratios that show
comparison highlighted. From the table, we can see that the
expected relationship between the w / l ratio of the image that
lies on the edge and that of the adjacent image is favored by
the data, indicating that radial curvature is indeed of the
same magnitude as azimuthal curvature. As another check,
Fig. 12 is the picture taken for ��0.15. It shows images of
seven circles. The images are a little out of focus, and we
measure their sizes according to the black core region, ex-
cluding the blurry fringes. The top spot lies on the edge.
Table II gives the values of their sizes and corresponding
ratios. We observe that these data are also in agreement with
our numerical observation.

V. DISCUSSION AND CONCLUSION

In this paper, we have presented our findings of vanishing
mean curvature in the contacting region in a single develop-

FIG. 9. Radial profiles of mean curvature in two different direc-
tions for the same d cone confined by a elliptical edge with major
axis of 45a and minor axis of 30a. The distance is in linear scale.
The data denoted by circles are measured along a major axis of the
elliptical edge �long direction�. The data denoted by pluses and
crosses are measured in the direction that makes 60° to the major
axis �short direction�. The crosses denote that the mean curvature
becomes negative, so that it is overcompensated.

FIG. 10. �Color online� Sketch of apparatus for measuring cur-
vature. Reflective transparency A is pressed into the container B by
a probe C. Object D, a row of identical black circles on another
transparency, forms the reflected image E, which is photographed
by camera F.

FIG. 11. �Color online� Images of circles as reflected from the
surface of a d cone with ��0.25. The lower images are closer to
the tip. The third image lies on the edge, which is perpendicular to
the line of images.
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able cone. The mean curvature near the supporting edge is
observed to vanish within our numerical precision for d
cones with various confining radii, thicknesses, and deforma-
tions. We investigate this phenomenon by studying variants
of the d cone and identifying the features that are important
for the vanishing of mean curvature to happen. It is found
that the presence of appropriate radial stress is necessary. We
also find that the d cone in a circular container somehow
produces the right amount of normal forces that induce just
enough radial curvature to cancel azimuthal curvature. By
comparing d cones formed with circular and elliptical con-
fining edges, we find that circular symmetry is indispensable
for the mean curvature to vanish. The numerically observed
phenomenon is verified by a crude experiment of projecting

identical circles onto the d-cone surface and comparing the
corresponding magnification ratios.

It is worth noting that the cancellation of curvatures does
not depend on particular choices of edge potential. In our
assessment as long as the choices of potential represent a
sharp edge, as is the case for our choices presented in Sec. II,
the induced radial curvature cancels the azimuthal curvature
at the edge. Some supporting evidence is as follows. If the
radial curvature were induced due to the particular form of
the edge potential, that radial curvature would be indepen-
dent of the deflection of the sheet. However, this contradicts
with our observations that induced radial curvature does de-
pend on the deflection of the sheet.

The vanishing of mean curvature is precisely the property
of a “minimal surface,” i.e., a surface of minimal surface
area for given boundary conditions. Liquidlike membranes,
such as a soap film �18�, follow the shape of a minimal
surface in equilibrium and thus have zero mean curvature
everywhere. This phenomenon is purely geometric and it re-
minds one of the Gauss-Bonnet theorem, which constrains
the average Gaussian curvature in a surface �19�. Our results
for the elliptical container suggest that it is some average
mean curvature along the rim that vanishes. Understanding
radial curvature Crr requires more than the Elastica equation,
since Crr necessarily creates stretching not allowed in the
Elastica approach �13�. One approach to understanding the
Crr is to assume the contact force inferred from the Elastica
approach and use the force von Kármán equation to infer
Crr. This unexpected geometrical regularity in force thin
sheets is important to understand, since it surely influences a
broad range of situations extending far beyond those studied
here. We shall explore this phenomenon further in future
publications.
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TABLE I. The sizes of images in Fig. 11, from top to bottom, in
arbitrary but fixed units. w is the azimuthal size �width� of the
image; l is the radial size �height�. The third spot lies on the edge.
The actual size of the top spot is about 1.5 mm in width and 1 mm
in height.

Azimuthal size Radial size Ratio

Spot w l w / l �w / l�2

1 20 15 1.333

2 20.5 15 1.367 1.868

3 20.5 11 1.864

4 21 15 1.400 1.960

5 22 15.5 1.419

FIG. 12. �Color online� Images of circles as reflected from the
surface of a d cone with ��0.15. The lower images are closer to
the tip. The first image from the top lies on the edge, which is
perpendicular to the line of images. The images are a little out of
focus. The sizes are measured based on the black core region, ex-
cluding the blurry fringes.

TABLE II. The sizes of images in Fig. 12, from top to bottom,
in arbitrary but fixed units. w is the azimuthal size �width� of the
image; l is the radial size �height�. The top one lies on the edge. The
actual size of the top spot is about 3 mm in width and 2 mm in
height.

Azimuthal size Radial size Ratio

Spot w l w / l �w / l�2

1 16 14 1.143

2 17 16 1.063 1.130

3 18 16.5 1.091

4 19 16 1.188

5 22 17 1.294

6 24 17 1.412

7 25 17 1.471
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